NOGALAMYCIN ANALOGS HAVING IMPROVED ANTITUMOR ACTIVITY

Sir:

Nogalamycin $(1)^{1,2}$ is an anthracycline antibiotic which has activity against Gram-positive microorganisms and is an antitumor agent.³⁾ However, because of its rather modest activity and undesirable side effects, it never became a clinically useful agent. It appeared likely that modification of 1 would give compounds superior in some respects to the parent compound since this has already been achieved by conversion of 1 to 7-O-methylepinogalarol $(2)^{2,3}$. As a consequence, a program of modification was initiated which has led to agents which have been shown to be superior to 1 and at least the equal of adriamycin, the present standard in antitumor chemotherapy, in antitumor activity.^{4,5)} The present communication describes the conversion of 1 to nogalamycinic acid (3), nogamycin (4), and 7-O-methylnogarol (5), and preliminary data on their biological activity.

Solution of 1 in 0.53 N KOH solution for 16 hours followed by acidification (H₂SO₄) gave the free acid (3). The crude product contained considerable inorganic material, but it was suitable for conversion to 4. Purification of 3 by column chromatography on silica gel using gradient elution with CHCl₃ - CH₃OH gave a red solid, mp 219~229°C; Rf (CHCls - CHsOH -H₂O; 78: 20: 2) 0.25; $[\alpha]_{D} + 456^{\circ}$ (c 0.37, CH₃-OH); UV (EtOH) λ_{max} 236 nm (ε 39,950), 269 (ε 21,350), 291 sh (e 8,700), 482 (13,550); IR (Nujol) 3450, 1670, 1630, 1595, 1580, 1290, 1230, 1215, 1135, 1095, 1060, 1015, 980, 920, 855, 830, 780, 763, and 725 cm⁻¹; mass spectrum m/e 729 (M $-CO_2$; H¹ NMR (CDCl₃-CD₃OD) δ 1.38 (m, 9H, 3CH₃C), 1.80 (s, 3H, CH₃C), 3.15 [s, 6H, (CH₃)₂NH⁺], 3.38, 3.40, 3.68 (3s, 9H, 3CH₃O), 3.2~4.0 (m, CHO, and CHN), 5.24, 5.88 (2d, 2H, anomeric), 6.92, 7.47 (2s, 2H, aromatic); ¹³C NMR (CDCl₃-CD₃OD) δ 16.4, 19.3, 24.6, 31.5 (4CH3C), 42.5 [(CH3)2N], 49.9, 58.2, 60.3 (3 CH₃O), 62.5~85.9 (10C, CHO, CHN), 97.3, 100.2 (anomeric), 113.1 ~ 161.4, (12C, aromatic), 178.9, 181.6, 191.4 (carbonyl). The analysis and mass spectra of 3 did not establish its molecular formula, but conversion to 2 by treatment at room temperature with methanolic hydrogen chloride (0.4 N) and determination of the molecular formula of 4 combined with physical data

defined the structure as **3** except that it exists as a zwitterion rather than as the free acid indicated.

When 3 was dissolved in DMF at room temperature for 16 hours, CO2 was given off (identified as BaCO₃) and 4 was formed. Evaporation of the solvent gave a crude residue purified by chromatography on silica gel using gradient elution with CHCl3 - CH3OH (yield of 1 to 3 about 25%). Recrystallization from CH₃-COCH₃ - CH₃OH (85:15) gave a red solid, mp 210~215°C; Rf (solvent as above) 0.50; $[\alpha]_{\rm p}$ + 273° (c 0.923, CHCl₃); UV (EtOH) λ_{max} nm 236 (e 51,700), 259 (e 25,850), 290 (e 10,050), 478 (e 16,100); IR (Nujol) 3500, 1670, 1630, 1575, 1295, 1230, 1110, 1055, 1005, 920, 890, 838, 778, 702, and 724 cm⁻¹; mass spectrum m/e 729; ¹H NMR (d₇-DMF) δ1.14, 1.23, 1.37, 1.69 (12H, 4CH₃C), 2.07~2.38, 2.83~3.0 (m, 4H, 2CH₂), 2.42 [s, 6H, (CH₃)₂N], 3.13, 3.42, 3.52 (3s, 9H, 3CH₃O), 3.3~4.2 (m, CHO, CHN), 4.95 (m, 1H, benzylic CHO), 5.32, 5.68 (2d, 2H, anomeric), 7.16, 7.32 (2s, 2H, aromatic); ¹³C NMR (CDCl₃) $\delta 15.2$, 18.3, 24.2, 30.4 (4 <u>CH</u>₈C), 30.8, 44.1 (2CH₂), 41.5 [(CH₃)₂N], 48.7, 59.0, 61.4 (3CH₃O), 66.4~88.6 (10C, CHO, CHN), 96.9, 99.8 (anomeric), 113.1~161.4 (12C, aromatic), 179.7, 190.8 (carbonyl).

Anal. Calcd. for $C_{37}H_{47}NO_{14}$: C, 60.96; H, 6.55; N, 1.92. Found: C, 58.55; H, 6.42; N, 1.94.

Methanolysis of 4 with boiling methanolic hydrogen chloride (0.4 N) for about 2 hours gave 5. Purification by chromatography on silica gel

(CHCl₃ - CH₃OH; 95: 5) gave a 53% yield of a red solid; mp 248~253°C; Rf (same solvent as above) 0.64; $[\alpha]_{\rm D} + 958^{\circ}$ (c 0.163, CHCl₃); UV (EtOH) λ_{max} nm 235 (\$\varepsilon\$ 41,200), 251 (\$\varepsilon\$ 25,500), 257 (ε 24,150), 290 (ε 10,500), 479 (ε 15,530); IR (Nujol) 3470, 1675, 1625, 1580, 1470, 1430, 1405, 1385, 1300, 1230, 1135, 1115, 1085, 1065, 1015, 950, 925, 890, 870, 850, and 790 cm⁻¹; mass spectrum m/e 541; ¹H NMR (CDCl₈-CD₃OD) δ 1.45, 1.73 (2s, 6H, CH₃C), 2.32~ 2.50, 2.73~3.1 (m, 4H, 2CH₂), 2.58 [s, 6H, (CH₃)₂N], 3.60 (s, 3H, CH₃O), 3.3~4.2 (m, CHO, CHN), 4.83 (m, 1H, benzylic H), 5.82 (d, 1H, anomeric), 6.77, 7.25, (2s, 2H, aromatic); ¹⁸C NMR (CDCl₃-CD₃OD) δ23.9, 30.0 (2 CH₃C), 36.1, 44.1 (2CH₂), 41.6 [(CH₃)₂N], 57.9 (CH₃O), 66.1~75.2 (6C, CHO, CHN), 97.6 (anomeric), 112.6~161.1 (12C, aromatic), 179.7, 190.9 (carbonyl).

Anal. Calcd. for $C_{28}H_{31}NO_{10}$: C, 62.10; H, 5.78; N, 2.59. Found: C, 62.21; H, 5.94; N, 2.66.

Much more extensive biological data has been reported,^{4.5)} but as an indication of activity, Table 1 gives results obtained against P388 leukemia in mice.

Acknowledgments

The authors thank Dr. GARY L. NEIL and his collaborators for the biological data. This work was supported in part by Contract NO1-CM-43753 with the Division of Cancer Treatment, National Institutes of Health, Department of Health, Education and Welfare.

> P. F. WILEY J. L. JOHNSON D. J. HOUSER

Research Laboratories The Upjohn Company Kalamazoo, Michigan 49001, U.S.A. (Received February 15, 1977)

Table	1.	Activity	of	nogalamycin	analogs	against
mou	ise	leukemia	(P3)	88)*		

Compound	Dose (mg/kg/day)	% ILS	
1	2.0	40	
3	10	38	
4	10	67	
5	50	155	
Adriamycin	1.0	57	

* All agents were administered ip days, 1, 5, and 9 after ip leukemia inoculation on day 0 except for adriamycin which was given on days 1~9. Inoculum was 10⁶ P388 cells/mouse given on day 0. Median survivals were 10.2~10.7 days in the different experiments represented.

References

- BHUYAN, B. K. & A. DIETZ: Fermentation, taxonomic, and biological studies of nogalamycin. Antimicr. Agents & Chemoth. -1965: 836~844, 1966
- WILEY, P. F.; R. B. KELLY, E. L. CARON, V. H. WILEY, J. H. JOHNSON, F. A. MACKELLAR & S. A. MIZSAK: Structure of nogalamycin. J. Amer. Chem. Soc. 99: 542~549, 1977
- BHUYAN, B. K. & F. REUSSER: Comparative biological activity of nogalamycin and its analogs. Cancer Res. 30: 984~989, 1970
- 4) NEIL, G. L.; C. L. BLOWERS, D. J. HOUSER, J. H. JOHNSON & P. F. WILEY: Antitumor activity of some new analogs of nogalamycin. American Association for Cancer Research, Annual Meeting, Denver, Colorado, May 18~21, 1977
- 5) LI, L. H.; B. K. BHUYAN & W. C. KRUEGER: Comparative biological and biochemical effects of nogalamycin and its analogs on L1210 mouse leukemia. American Association for Cancer Research, Annual Meeting, Denver, Colorado, May 18~21, 1977